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Abstract

In this paper, a new analytical method for projectile deformation and penetration into a semi-infinite target has been
developed. This method is based on separated, successive and incremental steps. In deformation step, the target
assumed rigid and the increment of projectile deformation was evaluated, whilst in penetration step, the projectile
assumed rigid and the increment of penetration was evaluated. These sequential steps continued untill the projectile
stopped.

Furthermore, a series of ballistic tests have been carried out with ogival projectiles with striking velocity of 600—
900 m/s. The projectiles and target plates material has been chosen from 4 types of steel. In this way, 210 tests for
48 combinations of projectile, target and velocity have been carried out. Numerical simulation has been also performed
using the LS-DYNA code.

Comparison between the depth of penetration obtained by this analytical method and those of the experimental and
numerical ones shows a good agreement.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Many analytical models have already been presented for penetration analysis of projectiles into target
plates, but due to some complications and scientific advances, investigators’ efforts have continued to
develop new methods to solve the problems. Although some of these efforts are related to the new
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problems, because of projectile and target developments, studies are still done to solve fundamental and
basic problems.

In most previous models, developed for penetration analysis of small calibre and ogival projectile with
the striking velocity up to 1000 m/s, projectiles have been assumed rigid. Although the assumption of
rigidity for a projectile is in the safe side in armor plate design, considering the projectile deformation
during penetration process is an interesting and of course complicated subject for theoretical study and
optimum design of armors.

As a review of the important analytical models, we may point out to the works carried out by Recht
(1967), by approximating of resistant force on projectile (Forrestal et al., 1988, 1991) based on spherical
and cylindrical cavity expansion theories and approximating of resistant force (Dikshit and Sundararajan,
1992; Liaghat and Malekzadeh, 1999) by balancing the rate of dissipated work in target with kinetic energy
changes of projectile (Yarin et al., 1995; Roisman et al., 1997; Yossifon et al., 2001) by considering a
potential function and calculating the velocity and stress fields in elastic and plastic regions of target,
and Chen and Li (2002), by using dynamic cavity expansion theory for ogival, conical and blunt projectiles
and metalic, concrete and soil targets, have presented models for penetration analysis of rigid projectiles
into semi-infinite metallic targets.

In most analytical models that projectile deformation has been considered, the projectile is assumed to be a
long rod with cylindrical geometry and striking velocity more than 1000 m/s. For instance (Alekseevskii, 1966;
Tate, 1967) by modifying Bernoulli equation and considering strength parameters of projectile and target
(Woodward, 1982) by a one-dimensional model and considering projectile and target as two striking cylinders
in mushrooming and erosion cases (Jones and Gillis, 1987) by defining a relation for pressure and considering
mushrooming strain (Luk and Piekutowski, 1991) by assuming three phases including head formation, steady
and secondary penetration, as well as solving survival and motion equations for every phase (Yaziv and
Riegel, 1993) by modifying integral theory (Ravid and Bodner, 1994) by a two-dimensional model based
on dynamic plasticity, and balancing the rate of total work on projectile and target (Roisman et al., 2001)
by assuming a potential function for velocity and approximating stress fields in projectile and target, and
Rubin and Yarin (2002) by developing a algebraic generalized formula for eroding and rigid penetration have
considered projectile deformation in penetration process in different ways.

Recently, Chen and Li (2004) found a transition point between the rigid- projectile penetration and the
semi-hydrodynamic penetration. Also they have discussed on upper and lower limit of this regimes.

The different regimes of projectile penetration into target can be defined as follows:

(a) Rigid projectile penetration.

(b) Penetration of deformable projectile, without erosion.

(c) The semi-hydrodynamic regime at high velocity with erosion (the range of validation of Tate’s model).
(d) The hydrodynamic regime at hypervelocity impact.

The method presented in this paper, related to case (b), which means deformable projectile without ero-
sion. The projectile has been assumed cylindrical with ogival nose and striking velocity up to 1000 m/s. A
method has been presented to describe projectile deformation and penetration in successive steps.

For validation, a series of terminal ballistic tests and numerical simulations have been also carried out
for comparison. The details are reported in Khodarahmi et al. (2003) works.

2. Description of incremental deformation and penetration method

In this method, two processes of deformation and penetration of the projectile are calculated succes-
sively, in small time increments. In each deformation step of solution, the target surface is assumed rigid
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and the projectile deforms without penetration, and the increments of projectile deformation and decrease
of velocity are calculated. In the next (penetration) step, the projectile is assumed rigid and penetrates into
the target, and the increment of penetration of the rigid projectile is calculated (Fig. 1). These sequential
steps continue until the projectile stops.

The results of the deformation step, including the decrease of velocity, the length reduction and the
geometry changes are considered in the next (penetration) step. Then, in the penetration step, the decrease
of projectile velocity due to resistance of the target surface are considered in the next (deformation) step.

The assumptions considered and the reasons are as follows:

(1) After initially transient phase of impact, the contact surface between the projectile and target has been
assumed as a part of sphere, then with increasing of deformation and penetration, and after inversion
of projectile nose material it will become as hemisphere with cylindrical extension. Based on this
assumption, the fundamental differential equations of Hawkyard’s model (1969), presented for anal-
ysis of cylindrical projectile impacted to a rigid flat surface, with some changes, has been applied for
analyzing the impact of ogival projectile to a rigid spherical cavity in projectile deformation steps.
Also the differential equations of Forrestal’s model (1988, 1991), presented for penetration analysis
of rigid projectile with spherical nose, have been used in rigid penetration steps, by making some
changes.

(2) Based on experimental results, obtained by Khodarahmi et al. (2003), the diameter of cavity is near
twice the projectile diameter in the range of applied velocities. Thus the cavity diameter has been
assumed equal to twice the projectile diameter in this model, for simplicity.

(3) In this investigation, the added mass and projectile erosion have not been considered, thus the mass of
projectile was assumed constant.

(4) It has been found that the friction coefficient in contact surface is dependent to current velocity of
projectile. Also the parametric studies, analytically done by Khodarahmi et al. (2003) have shown that
with increasing of the friction coefficient from 0.05 to 0.15, the penetration depth would decrease near
to 6%; therefore this coefficient has been assumed constant, equal to 0.1, for simplicity.

A computational program has been developed after modeling the physical phenomena. In this program,
deformation and rigid penetration steps are calculated by separated subroutines. The results of each step,

\

&

A\

o,

deformation phase (rigid target) penetration phase (rigid projectile)

Fig. 1. Sequential deformation and penetration steps.
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calculated in a subroutine, are passed to other subroutine as imported data. These successive iterations con-
tinue till the velocity of projectile becomes zero. Then, the total depth of penetration and the final length of
projectile are obtained.

2.1. Deformation of the projectile impacted to rigid spherical cavity

By assuming spherical surface of cavity in an intermediate deformation step, the striking of a cylindrical
projectile to a rigid spherical cavity has been analyzed. Then this analysis, with some changes, was devel-
oped for an ogival projectile. After striking a cylindrical projectile to a rigid surface, first an elastic stress
wave moves along the projectile and then, a plastic wave propagates with lower velocity as plastic defor-
mation. During each step of deformation an element of the projectile with length dx and cross-section
Ay passes through the plastic wave front and deforms to a layer with thickness dy and area A, according
to the geometry of cavity with radius r (Fig. 2). Based on kinematics of deformation, the following relations
can be written:

dx=ds+dy (1)
ds

where V and ds are the velocity and the displacement increment of free end of the projectile, respectively.
Using mass conservation we have:

Based on energy conservation and balancing of kinetic energy decrease with plastic work during time dz,

similar to the Hawkyard’s method, we may write:

zppV2 = Y,[In(4/40) — (1 — 4¢/4)] (4)

dx

Fig. 2. Deformation modeling of cylindrical projectile impacted to rigid spherical cavity.
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where Y, and p,, are yield strength and density of the projectile, respectively. Also, the equation of motion
for non-deformed portion of the projectile is
dv
YPA() = —ppr()a (5)
where x is non-deformed length of the projectile.
The radius of cavity at current time is obtained versus initial radius R, and total thickness of previous
deformed elements y as (Fig. 2):

r=R-y (6)

Also the height of edge of the deformed element with respect to natural surface is obtained by using the
area of spherical surface 4 as

h :A/2n(r—d2y> ()

The position of edge of deformed element, with respect to the coordinate system fixed on bottom of cav-
ity is obtained by

d
x]:y+7y+h 8)

A

where x| and r; are positions in axial and radial directions, respectively.

In an independent problem of deformation analysis of a projectile, impacted to a rigid cavity surface,
final profile of projectile, including deformed and non-deformed lengths may be obtained by solving
Egs. (1)—(5) and using relations (6)—(9).

In incremental deformation and penetration method in each deformation step, by considering a time
increment d¢, the increments of displacement of free end (ds), initial thickness of deformed element (dx),
thickness of the element after deformation (dy), decrease of projectile velocity (d})) and area A can be
obtained. The new values of these variables are calculated from the values in current step m and their incre-
ments by following relations:

" ="+ ds (10)
X =" — dx (11)
=y 4 dy (12)
yml = pm —dv (13)

Also, the radius of spherical cavity at the end of the step is
= dy (14)

The next step of solution (penetration step) starts after modifying the variables.

In the case of cylindrical projectile with ogival nose (Fig. 3), for each small dx increment of projec-
tile length, the geometry is near to a cylindrical increment. Thus above relations may be used after correc-
tion of the cross-section. The initial cross-section of each element is a function of x-position and obtained
by

A, =’ (15)
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Fig. 3. Geometry of ogival projectile.

where r, is the radius of ogival nose at x-position, and is obtained by following relations:

re= /R — (x = Ley)” — (Rog — Ro);  Ley < x < Ly 16)

e =Ro; x <Ly

where Ry is the radius of projectile at cylindrical region, R, is the curvature radius of ogival nose, L is the
cylindrical length and L, is the total length of projectile.

2.2. Rigid penetration analysis of a projectile into a semi-infinite target

During penetration of the projectile into the target, it is assumed that the nose geometry of projectile,
which is in contact with cavity surface, is a part of a sphere. By progressing of penetration and further
deformation of the projectile, the nose geometry can be converted to a hemisphere, and after more defor-
mation and edge inversion, to hemisphere with cylindrical extension. In rigid penetration analysis of the
projectile, a method has been used similar to Forrestal’s model (1988, 1991) presented for rigid penetration
analysis of a projectile with hemispherical nose.

By considering normal stress (o,,) and tangential stress (o; = ug,) due to friction, and calculating the
axial components and integrating on the nose surface, the axial force on the projectile, whose direction
is opposite of the motion, is obtained by

On
F. = m? / aa(V,0)[sin 20 + 2usin®0] dO (17)
0

where r, and 0, have been shown in Fig. 4.
The velocity of the target particles in the interface of projectile and cavity, due to rigid penetration with
velocity V, is

V,.(V,0)=7Vcos0 (18)

Using results of spherical cavity expansion theory, the radial stress on the cavity surface or the normal
stress on the nose of projectile is obtained by
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Fig. 4. Geometrical parameters of projectile nose.
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(Yt> cos ]

Gn(Va 6)/Yt = A + B

575

(19)

(20)

where Y, p, E; and v, are yield strength, density, Young’s modulus and Poisson’s ratio of the target, respec-

tively, and the constants A5 and B are given for incompressible elastic-perfectly plastic target.

Substituting o, from (19) to (17), resistant axial force F. on the nose of the projectile is obtained by

Fz =0y + ﬂn V2
o, = e Y Ay ﬂ—i— ul 0, 1 sin 20,
2 2
1
B, = EnrﬁptBs [5 — 4cos20, — cos40, + (46, — sin46,)]
where angle 6, is obtained from Fig. 4 as

On_tg—l<Rilx1>; x; <R

0, =m/2; x =R

Also the projectile equation of motion is

dv dr
’"(a) = ’”V(@ ="

Thus, the increment of penetration depth is obtained by
dZ =mVdV/(~F.)

(1)
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For an independent problem of rigid projectile penetration analysis, the total depth of penetration is
obtained by integrating Eq. (25) and using the axial force F, from Eq. (21):

Zi— /Ozf dz = —/VO(mV/FZ)dV (26)

(9

2.3. Combination of the projectile deformation and rigid penetration analysis in a new method

In the method of incremental deformation and penetration analysis, in a step of projectile deformation,
for a time increment dz, values of ds, dx, dy, dV and A are evaluated by solving Eqgs. (1)—(5) and using
relations (6)—(9), and the target is assumed rigid. Modified values of these variables are calculated by
relations (10)—(14).

Then, in a step of rigid penetration, values of dV and dZ are obtained by relations (21)—(25), and
modified values are calculated by following relations:

pmtl _ pym _ qy (27)

7"t =27"4+dz (28)
Initial conditions in this process are defined as

s=0, x=L,, y=0, V=V, A=4y, Z=0

where Ly, Vy and A, are initial length, striking velocity and initial cross-section of projectile.

Incremental calculations of the problem are performed in successive steps of deformation and rigid pen-
etration. These steps are continued until the projectile is stopped. Consequently, the total depth of penetra-
tion (Zy) of the projectile is obtained by summing the increments dZ.

3. Terminal ballistic tests

For comparison of results, a series of ballistic tests have been carried out by using cylindrical projectiles
with ogival nose, 6.7 mm diameter, 34.4 mm length and 7.7 g mass and 30 x 30 cm target plates with 25 mm
thickness. The schematic setup of experiments, is shown in Fig. 5.

Four kinds of steel with different strength and hardness have been used in the tests for projectiles and
targets. Also, the striking velocity of projectile has been programmed at three levels: 650, 750 and
850 m/s.

At least four repetitions have been done for each type of test and totally 210 ballistic tests were carried
out, which some results have been presented in this paper for comparison.

I\
B - - \
Projectile G
Optic Windows

Gun System A
Target Plate

00 oo

Power Supply Counter

Fig. 5. Terminal ballistic tests setup.
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The initial velocity of projectiles have been measured by two optic windows. An oscillator device starts
to count when a projectile passes through the first window. Then the counter is stopped, when it passes
through the second window. The passing time of the projectile between the windows is measured, and then
the average velocity is calculated by dividing the distance by the time.

4. Numerical simulation

Simulation of the process has been done using the LS-DYNA code. The projectile and the target have
been modeled by axisymmetric elements. Thus, the target plate has been considered as a cylinder with
60 mm diameter (Fig. 6a).

Nodes of circumference of target cylinder have been fixed, and symmetry conditions have been used for
nodes on symmetry axis.

The Johnson—Cook material model and Gruneisen equation of state have been used for both parts. In
the initial simulation due to ogival nose of projectile and high deformation of elements at contact region,
the running stopped after 18 ps and error message is received (Fig. 6b). Therefore the element failure ability
of the Johnson—Cook model has been used for solving this problem. Thus, before the high deformation and
receiving error message, critical elements are failed and deleted. By deletion of a few obtrusive elements,
running is continued until the projectile stops. Numerical values of depth of penetration (DOP) have been
measured from vertical distance of bottom of the cavity to the initial surface of the target plate.

5. Results and discussion

Two limit combinations of projectile and target(including hard projectile-soft target and soft projectile-
relatively hard target) among sixteen combinations, have been selected for discussion in this paper.

LS-DYNA RESULTS

Time-0 Time-18e-6
a b

Fig. 6. (a) Finite element modeling of projectile and target, (b) deformation of elements at contact surface.
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The yield strength (0.2% offset) and ultimate strength of projectiles and target plates have been given in
Table 1, and analytical values of depth of penetration obtained from the new method, with experimental
and numerical values from tests and simulations in Table 2.

Analytical, numerical and experimental results of test no. 19 (projectile M1, target P7 and striking veloc-
ity 760 m/s) have been given in Fig. 7 and shows qualitatively good agreement.

The graphs of penetration depth versus striking velocity for two combinations of projectile and target
have been shown in Figs. 8 and 9. In these figures, it is obvious that with velocity in the range of
600-900 m/s, the values of penetration depth of projectile obtained from the analytical model have a very
good agreement with respect to the experimental values at moderate to upper velocities. At lower velocities,
results of the analytical model for depth of penetration are slightly higher than experimental values.

Also results of numerical simulations using LS-DYNA are in agreement with experimental values, in the
range of applied velocity.

In addition the results of Forrestal’s model for rigid penetration of a projectile with similar material and
geometry including diameter and length, but with a spherical nose, have been shown in Figs. 8 and 9. These
curves show that, the results of Forrestal’s model for penetration depth are very high with respect to experi-
mental and numerical values, in the applied conditions of materials and velocities. This fact is based on two

Table 1
Strengths of projectiles and target plates
Projectile Target
Code Sy (MPa) Su (MPa) Code Sy (MPa) Su (MPa)
M3 308 496 P2 382 543
Ml 533 603 P7 308 462
Table 2
Analytical, experimental and numerical values of penetration depth
Case Test no. ¥V, (m/s)  Analytical DOP (mm)  Experimental DOP (mm)  Numerical DOP (mm)
Projectile: M3 Target: P2 120 858 8.2 8.50 8.86
121 849 8.1 7.46 8.37
122 851 8.1 7.51 8.58
115 758 7.1 6.89 6.45
116 750 7.0 6.15 6.23
117 746 6.9 5.43 6.20
111 650 5.8 432 3.98
113 656 5.8 4.08 4.17
114 630 5.5 4.61 3.66
Projectile: M1 Target: P7 14 858 9.4 10.65 9.36
15 850 9.3 9.62 9.17
16 846 9.2 9.15 9.03
17 768 8.2 8.84 7.09
19 760 8.1 6.46 7.06
20 780 8.4 9.38 7.31
21 648 6.6 2.99 4.57
23 650 6.6 3.45 4.61

24 660 6.7 4.97 4.76
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Fig. 7. Penetration analysis results (Projectile M1, Target P7, velocity = 760 m/s): (a) deformation and penetration from analytical
modeling, (b) numerical simulation by LS-DYNA, (c) deformed projectile after ballistic test.
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Fig. 8. The depth of penetration versus striking velocity (Projectile M1, Target P7).
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Fig. 9. The depth of penetration versus striking velocity (Projectile M3, Target P2).

main reasons in Forrestal’s model. The first reason is the rigidity of the projectile without any mushrooming
at nose, leads to more penetration. The second one is that there is no dissipation of kinetic energy due to
projectile deformation. However in the analytical model presented in this paper, the mushrooming and dis-
sipation of energy due to the projectile deformation have been considered, therefore it has given the better
results in this conditions.

The difference of the analytical values, obtained by this model, with experimental results at lower veloc-
ities may be explained by two reasons. The first one related to the fact that the Forrestal’s rigid penetration
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model gives better results for deep penetration at higher velocities (Chen and Li, 2002), therefore this matter
affects on rigid penetration steps of the new modeling. The second reason related to the assumption of con-
stant cavity diameter, which has been considered in deformation steps of process. This assumption is almost
correct at most of process at high striking velocities, but at lower striking velocities, it is valid only at the
second half of process.

Totally this method has some advantages and disadvantages as follows:

Advantages:

1. This method presents a new idea for analysis of contact/penetration of projectile and target plate. In this
method, the interaction between the projectile and target has been divided to two distinct parts, includ-
ing rigid projectile-deformable target and deformable projectile-rigid target. Therefore, by some correc-
tions in this method, an extensive range of problems, from perfectly rigid penetration into target plate to
projectile mushrooming due to impact to rigid target, may be covered.

2. Although in this paper, the Hawkyard” model has been used for projectile deformation and Forrestal’s
model for rigid penetration, but other modified models may be used and replaced, for modifications.

Disadvantages:

1. The assumptions related to spherical contact surface of projectile and target, and constant cavity diam-
eter (equal to twice of projectile diameter), although are not far from realistic views, but they may not be
accurate.

2. Due to some difficulties, the ballistic tests have been carried out at a limited range of velocity (600—
900 m/s), and limited range of strength for projectile and target materials. Thus, for extension of this
method to a wide range of velocities and strengths, many other tests might be programmed.

6. Conclusion

In this paper, using two previous analytical models for deformation analysis and penetration analysis
of a projectile, a new penetration analysis method for deformable projectile has been developed. In this
method, deformation and penetration of projectile have been analyzed in separated, successive and incre-
mental time steps. In each deformation step, the target was assumed rigid and the increment of the projec-
tile deformation has been evaluated, using the Hawkyard’s fundamental relations with some modifications.
Also in each penetration step, the projectile has been assumed rigid and the increment of penetration of
rigid projectile calculated using the Forrestal’s model, based on cavity expansion theory and by some
changes. Comparison of the penetration depth obtained by the new method with experimental values from
a series of ballistic tests and numerical simulations by LS-DYNA shows good agreement, especially at
velocities higher than 750 m/s. Therefore, this method can be used for considering the projectile deforma-
tion during penetration analysis. In addition, it seams that this method, by some considerations, may be
used in an extensive range of problems, from perfectly rigid penetration into target plate to projectile mush-
rooming due to impact to rigid target.
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